Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models with Local Dependence

نویسندگان

  • Jared S. Murray
  • Jerome P. Reiter
چکیده

We present a nonparametric Bayesian joint model for multivariate continuous and categorical variables, with the intention of developing a flexible engine for multiple imputation of missing values. The model fuses Dirichlet process mixtures of multinomial distributions for categorical variables with Dirichlet process mixtures of multivariate normal distributions for continuous variables. We incorporate dependence between the continuous and categorical variables by (i) modeling the means of the normal distributions as component-specific functions of the categorical variables and (ii) forming distinct mixture components for the categorical and continuous data with probabilities that are linked via a hierarchical model. This structure allows the model to capture complex dependencies between the categorical and continuous data with minimal tuning by the analyst. We apply the model to impute missing values due to item ∗Jared S. Murray ([email protected]) is Visiting Assistant Professor, Department of Statistics, Carnegie Mellon University. Jerome P. Reiter is the Mrs. Alexander Hehmeyer Professor of Statistical Science, Duke University. This work was supported by grants from the National Science Foundation (SES11-31897, SES-1130706 and DMS-1043903). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Census Bureau or National Science Foundation. 1 ar X iv :1 41 0. 04 38 v2 [ st at .A P] 1 3 O ct 2 01 5 nonresponse in an evaluation of the redesign of the Survey of Income and Program Participation (SIPP). The goal is to compare estimates from a field test with the new design to estimates from selected individuals from a panel collected under the old design. We show that accounting for the missing data changes some conclusions about the comparability of the distributions in the two datasets. We also perform an extensive repeated sampling simulation using similar data from complete cases in an existing SIPP panel, comparing our proposed model to a default application of multiple imputation by chained equations. Imputations based on the proposed model tend to have better repeated sampling properties than the default application of chained equations in this realistic setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cautions on the Use of Multiple Imputation When Selecting Between Latent Categorical versus Continuous Models for Psychological Constructs.

Clinical psychology researchers studying adolescents and young adults long have been interested in characterizing the latent categorical (classes/profiles) versus continuous (factors) nature of psychological syndromes. To inform this debate, researchers sometimes compare the fit of finite mixture versus factor analysis models to symptom data. This study explains and evaluates how missing data h...

متن کامل

Practice of Epidemiology Multiple Imputation for Missing Data via Sequential Regression Trees

Multiple imputation is particularly well suited to deal with missing data in large epidemiologic studies, because typically these studies support a wide range of analyses by many data users. Some of these analyses may involve complex modeling, including interactions and nonlinear relations. Identifying such relations and encoding them in imputation models, for example, in the conditional regres...

متن کامل

Multiple Logistic Regressio

A common problem in software cost estimation is the manipulation of incomplete or missing data in databases used for the development of prediction models. In such cases, the most popular and simple method of handling missing data is to ignore either the projects or the attributes with missing observations. This technique causes the loss of valuable information and therefore may lead to inaccura...

متن کامل

Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys

In many surveys, the data comprise a large number of categorical variables that suffer from item nonresponse. Standard methods for multiple imputation, like log-linear models or sequential regression imputation, can fail to capture complex dependencies and can be difficult to implement effectively in high dimensions. We present a fully Bayesian, joint modeling approach to multiple imputation fo...

متن کامل

Multiple imputation for missing data via sequential regression trees.

Multiple imputation is particularly well suited to deal with missing data in large epidemiologic studies, because typically these studies support a wide range of analyses by many data users. Some of these analyses may involve complex modeling, including interactions and nonlinear relations. Identifying such relations and encoding them in imputation models, for example, in the conditional regres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015